
ZONAL FLOWS BELOW THE SUN’S CONVECTION: 
ANALYTIC APPROXIMATION 

Charles L. Wolff & Hans G. Mayr 

POPULAR SUMMARY 

We have derived a simple analytic solution showing how the Sun’s global oscillations (g-modes) can 

drive east-west flows at low latitude deep inside the Sun. This flow is analogous to the Quasi Biennial 

Oscillation in the Earth’s upper atmosphere. It has an observed period of 1.3 years in the solar case but 

its cause was not known until we published an explanation in a Letter to the Editor a few months ago. 

Now we give full details of the model and show how it can be used to limit the range of g-modes that 

can be actively driving the reversing flows. A nonlinear feedback feature of the model is that the flow 

itself creates the turbulent dissipation that extracts momentum from the g-modes that, in turn, drives the 

flow. 
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ABSTRACT 
The low latitude zonal flows detected beneath the Sun’s convective envelope (CE) are mod- 

elled as a wave with 1.3 yr period running toward the solar center with exponentially diminishing 
amplitude. The flows have sufficient shear in latitude to make them horizontally unstable, creat- 
ing a large diffusivity N lo9 to 1O’O m2s-l. As this turbulence locally dissipates g-modes, they 
deposit zonal momentum that sustains the flow. “Wave filtering” causes some of the momentum 
to be deposited in proper phase to  advance the flow downward, analogous to  flows seen in the 
Earth’s upper atmosphere. The analytic model shows the effect of a ”typical pair” of g-modes 
(angular harmonic C and oscillation frequency ao) acting alone to drive the flow. Their efficiency 
in driving a flow is proportional to at least m3, the zonal harmonic number. Thus high harmonic 
modes with Irnl % C are of most interest and are used in numerical examples. Taking the free 
parameters to  be C and (TO, the analytic model yields just one peak flow velocity Vo and one g- 
mode amplitude that is acceptable for each choice, (1, GO). After future measurements constrain 
VO to a small part of its currently uncertain range (5 to perhaps 100 m/s) there will be only one 
free parameter instead of two, and our model will provide a relation (TO(C) that constrains those 
g-modes that can be mainly responsible for driving the flow. 

Subject headings: Fluid Dynamics-Sun: oscillations-Sun: interior 

1. INTRODUCTION 

East-west flows that reverse direction about ev- 
ery 1.3 yr are observedin the Sun (Howe, et al. 
2000; Antia & Basu 2000; Komm, et al. 2003) 
below the convective envelope (CE) at low lati- 
tudes. Analogous flows in the Earth’s upper at- 
mosphere are driven by gravity waves (Dunker- 
ton 1997; Mayr, et al. 1997, 2000) and since the 
Sun’s CE excites such waves, initial explanations 
of the solar flow were based on a flux of gravity 
waves propagating downward from the CE (Fritts, 
Vadas, & Andreassen 1998; Kim & MacGregor 
2001, 2003; Talon, Kumar, & Zahn 2002). A rich 
progression of theoretical flows (steady, periodic, 
quasi-periodic, chaotic) was demonstrated by Kim 
& MacGregor (2001) as the ratio of viscosity to  
gravity wave strength was decreased. These grav- 
ity wave models, however, apply only to a thin 

layer (< 0.02Ra) immediately below the CE and 
do not explain the bulk of the observed 1.3 yr flows 
(Wolff & Mayr 2004, hereafter Paper I). This is 
true because gravity wave models depend on ver- 
tical turbulence, which does not extend below that 
thin layer (Schatzman, Zahn & Morel 2000). 

A new approach was suggested in Paper 
I invoking global oscillations (g-modes) excited in 
the Sun’s core and partially dissipated by horizon- 
tal turbulence below the CE. As the flow generates 
this turbulence, energy and momentum flux is ex- 
tracted from the g-modes to  accelerate the flow. 
Eventually the turbulence grows to  limit the maxi- 
mum flow speed. In the present paper, we describe 
this model more fully and present a simplified an- 
alytic solution suitable for estimating the param- 
eter range for the reversing flow and the g-modes 
that generate it. Only two properties of a g-mode 
are used: its spherical harmonic amplitude distri- 
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bution and its dispersion relation in the limit that 
the square of the oscillation frequency, o2 << N 2 .  
(Here ff is the buoyancy frequency typical of the 
shell, 0.6 to  0.7 &, containing most of the flow 
energy.) The CE is not considered since g-mode 
amplitudes there decline rapidiy with height, and 
the flow energy would be comparatively small. 

After an overall description in $2, we give in 
$3 the basic low latitude momentum equation and 
an analytic flow field that will be an approximate 
solution. In $4 turbulent damping is evaluated, 
and $5 shows the resulting deposition rate of mo- 
mentum into the flow from a representative pair 
of oppositely running g-modes. Results from the 
simple analytic solution are given in $6, and limi- 
tations of the model are discussed in $7. 

2. FLOWS DEEP IN THE SUN DRIVEN 
BY g-MODES 

To understand the proposed wave mechanism 
it is important to appreciate the dynamical condi- 
tions of the environment below the convective en- 
velope in which the zonal flow is observed. Figure 
la shows the steady flow speeds in the tachocline 
from the analytic fits of Charbonneau, e t  al. (1999) 
to  helioseismic measurements. This differential 
rotation will be ignored compared to the larger 
velocities V that we will consider for the 1.3 yr 
reversing flow. The flow is drawn as a wave 
travelling downward with diminishing amplitude. 
The approximate midpoint of the observed flow, 
r, = 0.675R0, is marked with a dotted line. It 
is well established that solar flows below the CE 
cannot cause turbulence in the vertical because 
the velocity shears are not large enough to  over- 
come convective stability (Spiegel & Zahn 1992). 
But convective overshoot can cause a weak ambi- 
ent turbulent diffusivity in the vertical direction 
(Fig. lb ,  dashed lines) as well as radiative dif- 
fusivity. The turbulent dsusivity was derived by 
Montalban & Schatzman (2000) from convective 
overshoot in one and two dimensional models and 
stated in terms of ambient temperature, which we 
converted to  radial distance using a standard solar 
model. By comparison, horizontal diffusivities D 
are much larger. The two dashed lines in Figure 
IC roughly bound estimates by Schatzman (1996); 
Talon, Kumar, & Zahn (2002) of D due to gravity 
waves generated by plumes from the CE. 

In our model, the dominant source of D is tur- 
bulence generated by the reversing flow itself ($4). 
The solid lines show this D for model flows whose 
maximum speed at r ,  is either 5 or 50 m/s. This 
turbulence is a prerequisite for dissipating the g- 

develops because the zonal flow occurs mainly at 
low latitudes making its horizontal gradients suf- 
ficiently large to overcome an angular momentum 
hurdle and generate turbulence. 

In the proposed mechanism, the g-modes carry 
net energy up from the solar core and encounter 
this turbulence, causing them to deposit some of 
their momentum flux into the zonal flow. As the 
flow develops it builds up the horizontal turbu- 
lence which is also diffusing energy away from the 
flow. With the resulting diffusivity being propor- 
tional to the magnitude of the flow, independent 
of direction, the system is inherently non-linear 
such that it produces a natural cap on the flow to 
determine its peak speed. 

The other process important for the reversing 
flow is wave filtering. As the waves build up the 
flow in one or the other direction, they are selec- 
tively dissipated in that direction by the Doppler 
effect. The resulting imbalance in the wave mo- 
mentum flux then favors the build up of the flow 
in the opposite direction higher up. While the flow 
dissipation discussed earlier is determined by flow 
speed, the wave filtering is most important where 
the vertical gradient of the speed is large. 

Following Paper I , we shall present an analytic 
formulation of the proposed mechanism and ap- 
ply it to the solenoidal (divergence free) zonal mo- 
mentum budget at the equator. Since the Corio- 
lis force vanishes at the equator, the compressible 
meridional winds do not come into the picture nor 
does the energy budget of its flow. Thus it is jus- 
tified, to first approximation, that the momentum 
budget of the flow at the equator is treated in the 
framework of a one-dimensional model - the ”pro- 
totype model” introduced by Lindzen & Holton 
(1968) for the terrestrial quasibiennial oscillation. 
In reality the problem is two dimensional. Away 
from the equator, the meridional circulation comes 
into play and redistributes the momentum such 
that the flow is naturally confined to low latitudes. 

Restricting the analysis to  the equatorial re- 
gion, we postulate that (a) the flow oscillation 
propagates down having a wavelength consistent 
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with the observations and (b) the amplitude de- 
clines with depth. Since the proposed wave mech- 
anism is inherently non-linear, only a simplified 
analytic solution of the zonal momentum equation 
is presented. The real and imaginary components 
yield estimates of the magnitude of tiit: revalaiiig 
flow in terms of g-mode properties: amplitude, an- 
gular harmonic, oscillation period. 

3. MOMENTUM BALANCE 

Relative to spherical coordinates r, 8,4  rotat- 
ing with the nonconvecting solar interior, write 
the east-west flow velocity, 4V(r, t ) f ( O ) .  Its diver- 
gence is zero. Conservation of the 4 component of 
momentum 

dV - J 
p-f = 4 -  v .II + - d t  r sin 6 

determines the flow near the equator; II is the 
turbulent stress tensor that diffuses the flow's mo- 
mentum, j is the rate per unit volume at which 
angular momentum is deposited into the flow by 
g-modes, and the density p is taken independent 
of time. The right member is evaluated in 54 and 
85 for the following model flow field. 

As mentioned earlier, pure zonal flow is unreal- 
istic sufficiently far from the equator. A latitudi- 
nal Coriolis force emerges to drive a weak merid- 
ional flow that reduces the zonal flow at higher 
latitudes. By latitude 30", V is observed to be 
zero (Howe, et al. 2000). We model this by setting 
f ( 6 )  = 1 - 4 cos2 6 and consider only low latitudes, 
say 6 = 90" d~ 20". The radial dependence is mod- 
elled as a wave of frequency w and wavenumber k 
sinking into the Sun, 

J7(T, t )  = 4T)ei["t+"('-'-)l (2) 

where r ,  = 0.675% is near the midpoint 
of the observed flow and the amplitude, A = 
VO exp[kA(r - rm)] ,  declines with depth. We will 
use VO = 50 m/s in a numerical example. But 
other values are possible because the observations 
of Howe, et al. (2000) do not determine a unique 
value for VO or k. The limited radial resolving 
power of their measurement determines only a 
family of possible pairs (VO, k) any of which would 
appear to give their reported peak speed of about 
5 m/s. This family is plotted on Figure 2, assum- 
ing as in Paper I that their radial resolution has 

a full width at  half height of 0.075%. Setting 
JCA = 10/Ra permits the approximation k A  << k. 
Then radial derivatives of A, w and k can be ig- 
nored and dV/dr = ikV.  

4.1. Two Dimensional Turbulence 

The observed latitudinal shear is strong enough 
to  be unstable. The resulting turbulent motion 
occurs on spherical surfaces because of extreme 
stability in the radial direction (Spiegel & Zahn 
1992). A mathematical study by Watson (1981) 
showed that radially stable layers of a slowly ro- 
tating star are horizontally unstable when B > 
0.29 in the differential rotation curve, R(8) = 
Ro (1 - B cos2 e), often applied to  solar data. Since 
our model flow has an effective B one order of 
magnitude larger, it should be strongly turbu- 
lent even though we do not consider polar re- 
gions as does the Watson (1981) study. Using 
A6 = 30°, the turbulence has a latitudinal forc- 
ing scale L r,A6 = 250 Mm. Its characteris- 
tic time T - LIVI-' = 0.16 yr for an equatorial 
flow velocity V = 50 m s-I. The largest turbu- 
lent scales ( L  and L/2)  carry off most of the flow's 
energy and momentum since energy in 2D turbu- 
lence falls steeply as the cube of the scale (Tabel- 
ing 2002; Paret, Jullien, & Tabeling 1999). Only 
about 10% of turbulent energy is in scales L /3 and 
smaller. 

A proper estimate of turbulent diffusion needs 
to account for the flow's downward drift. Figure 3 
shows IVI at some instant and the arrow indicates 
how far this pattern will move in a time 27. (Tur- 
bulence stimulated by V at some instant becomes 
fully developed after a time I- and decays after 
a similar time interval.) Thus turbulence has to  
be computed from some weighted average of IV/ 
that prevailed during the recent past at a given 
location. It's clear from the figure that the effec- 
tive velocity forcing the turbulence will be  a wig- 
gling curve with mean height close to  2A/7r. The 
wiggles will be ignored and the effective turbulent 
velocity V, E 2A/n. Then horizontal diffusivity 
caused by the flow is simply 

D - LVt (3) 
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4.2. Damping of Flow 

In equation (1) only two elements (IIs,, and 
I I T , b )  of the symmetrical stress tensor can con- 
tribute because of zonal symmetry. The latter el- 
ement is zero sirice V S i t i d  eddy ~iecnsity is ms- 
ligible in this part of the Sun. The remaining el- 
ement has the mathematical form in spherical co- 
ordinates, 

& V . I I =  
( r  sin dB 

(4) 
where pD is the horizontal eddy viscosity. Since 
f has the dominant B dependence near the 
equator, equation (4) reduces to 0 . V ll = 
~ ~ D V T - ~  cos(20). This term removes momentum 
from the flow and, being nonlinear in velocity am- 
plitude (DV cc A2) ,  it will limit the strength of 
the flow. 

4.3. Damping of g-modes 

Turbulence also removes energy from the g- 
modes but diffusion theory does not apply since 
the main turbulent scales are larger than g-mode 
horizontal scales of interest here. Instead, hori- 
zontal advection in random directions is the main 
physical loss mechanism, as suggested by the ref- 
eree of Paper I . Recall that the kinetic energy 
of a linear oscillation is converted into potential 
energy twice each oscillatory cycle. For g-modes 
this consists of work done against buoyancy and it 
is temporarily stored as a local temperature fluc- 
tuation. Advection from turbulent eddies in the 
flow transports the thermal variation horizontally. 
That weakens its abilityto drive the next velocity 
cycle of the g-mode because it is misaligned with 
the rest of the global oscillation. The l / e  decay 
time of local energy is approximately the time it 
takes the effective turbulent velocity to  carry fluid 
a distance k;', where kh = e*/r is the horizontal 
wavenumber of the g-mode and C* = ,/[.!(.e + l)]. 
The inverse is the decay rate of local g-mode en- 
ergy due to  turbulent advection, 

rC N kh&. (5) 

5. MOMENTUM DEPOSITION BY g- 
MODES 

Local dissipation of a g-mode causes it to de- 
posit momentum flux in the same layers. The ba- 

sic relation is derived for a single pair of g-modes as 
was done, e.g., by Kim & MacGregor (2003) and 
in Paper I .  In future work, one could sum such 
results over all mode pairs thought to be active. 
Let Uf be the horizontally averaged kinetic en- 
ergy density of a pr~grade(+) zcc! r e t r q p d ~  (-) 
g-mode having identical radial and angular har- 
monic numbers (n, e, m) except that the azimuthal 
numbers m have opposite signs. In the slowly ro- 
tating Sun, such mode pairs have the same oscil- 
lation frequency 00 except for negligible high or- 
der terms. Per unit volume of fluid, each mode 
deposits energy at the rate dJ f  and angular mo- 
mentum at  the rate (2m/u*)nUh (Zahn, Talon, & 
Matias 1997; Paper 12004). This momentum con- 
centrates at low latitudes since modes with Iml s e 
are the most effective (56.1). The Doppler-shifted 
oscillation frequency applies: uf = uO(1 T p)  
where ,B = Vlc4l-l and co = aom-lrsin8 is the 
zonal phase velocity of the g-mode. Summing the 
effect of the two g-modes and using p2 << 1, angu- 
lar momentum is deposited into the fluid at a rate 
per unit volume, 

(6)  
. 21ml J = --rC(U+ + u-)(p + E ) .  

a0 

The @ term steepens shear and E E (U+ - 
U-) (U+ + U-)-' causes the flow to drift down 
toward the incident wave energy because of un- 
equal cumulative damping of the two oppositely 
running waves. 

Choose some deep reference level r1 where the 
flow is negligible and assume the two g-modes 
have the same energy density there: U f ( r l )  = 
U - ( r l )  U1. Above this level turbulent advec- 
tion attenuates the energy density as 

Uf(r  > T I )  = u1e-a*, (7) 

where a:* = JT: drr~v;' (Zahn, Talon, & Matias 
1997), vg = (u*)2(Nkh)-' is the g-mode's up- 
ward group velocity. Vertical wavenumber k, was 
eliminated from group velocity using the disper- 
sion equation (kh/k,)2 = 0 2 ( N 2  - a2)-' with 
u2 <( N 2 .  Equation (7) defines cy with respect 
to energy as is customary. (Paper I wrongly de- 
fined cu to attenuate amplitude, making a: half as 
large). Expanding the Doppler factor, 
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Name the two parts such that a* E 6 f 6 and in- 
sert into equation (7). It follows that E = -tanh(6) 
and, since b2 <( 1 for conditions studied in this pa- 
per, E = -6. 

The g-mnds attenuation occurs through 
the exponent 6, which is shown on Figure 4a 
for several values of VO and the case 1 = 50, 
no = 1.1 x lov4 s-l. To calculate other cases use 
6 & V,1(1 + 1)no2. The integrand for 6 contains 
a rapidly varying factor e ik ( r - rm)  permitting the 
slower radial dependences to be moved outside the 
integral sign. The result near the equator is 

(9) 

where F, = 2Nki(l~n;)-~.  A factor, V(r )  - V ( q ) ,  
was approximated as V(r )  by choosing a lower 
limit r1 = 0.4Ro that is below the large flow ve- 
locities. Figure 4b shows the real parts of e and ,Ll. 
Since the latter is proportional to  V and therefore 
the flow's angular momentum, one can see that the 
E term will add angular momentum (equation 6) 
with the proper sign and phase to  move the entire 
flow downward. 

6. RESULTS 

6.1. Analytic Solution 

Now the zonal momentum equation (1) can be 
reduced to algebraic form with equations (4 & 6 )  
and the flow field in equation (2). The result near 
the equator, with sin0 x 1 is, 

8L 
r2 

iwv + --v,v = Fl(V + iF,&V) (10) 

where F1 f 2m2n(U+ + U-)p-'(aor)-2. Recall 
that the effective turbulent velocity Vt is positive 
and proportional to the amplitude of V, showing 
that two terms are nonlinear in flow amplitude. 
After cancelling the common factor V ,  real and 
imaginary' terms must balance separately. The 
real terms require F1 = ~ L V , T - - ~ .  Substituting 
this in the definition of Fl gives a condition on how 
much g-mode energy density is needed to  drive the 
flow, 

It declines at least as fast as m3 (precisely, as 
C*m2), which demonstrates how much more eE- 
cient are high zonal harmonics of a given C for 
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driving the flow. The g-mode power dissipated 
per unit volume is K (  Uf + U - )  and declines as m2. 
Equating the imaginary terms and eliminating F1 
gives the forcing velocity for horizontal turbulence, 

that is needed for a self consistent flow solution. 
It is inversely proportional to  e* because of the 
factor kh. 

Although radial derivatives of w and k were ig- 

lows them to be weak functions of r. Equation 
(12) constrains the radial dependence of w t  to be 
proportional to NK2rb4.  But additional physics 
coupling layers vertically may be needed to  fully 
determine the radial dependences of flow param- 
eters A, w and k. A numerical integration of the 
differential equations seems to  be the next step 
needed and, if practical, it should include the weak 
transient meridional circulations that must accom- 
pany a reversing z o n 3  flow. 

. 

nored, our mathematical approximation still al- B n 

6.2. Numerical Values 

Many different arrays of g-modes could cause 
the observed flow velocity and 1.3 yr period. Here 
we display "typical" g-mode pairs (prograde and 
retrograde), each of which could drive the observed 
flow if that pair acted alone. Future workers could 
use this as a guide to  choosing arrays of modes 
for computing their combined effect. The typi- 
cal mode for driving the flow will be one in which 
Iml % C because of the very high efficiency (56.1) of 
modes with large /mi. We substitute Iml = C = L* 
in the formulas to simplify the next two figures. 
This is minor compared to the order of magni- 
tude uncertainties faced earlier in evaluating tur- 
bulence. After finding sets of parameters needed 
to drive the flow on and near the sphere r = T,, 
we briefly mention radial dependence. 

At r ,  there is only one free parameter Vi, de- 
scribing the flow. Figure 2 assigns a compatible 
radial wavenumber and the frequency w = 27r(1.3 
yr)-l is observed. Three parameters describe the 
typical g-mode pair; namely, C, 00 and the energy 
density. Equations (11 & 12) constrict this four- 
fold freedom to two free parameters. Observers 
care more about the velocity amplitude utyp of 
the typical g-mode so we replace energy density by 



writing (u+ + U - )  = $ p [ ( ~ + ) ~  + ( u - ) ~ ]  5 p ~ & ~ -  

Then equation (11) gives utyp = 2a0(Lrj-~)T. 
This velocity for one g-mode will be very large 
because it is intended to stand for the total effect 
nf th~i~rand': nf g-modes of similar scale. Figure 
5a shows how much local mode velocity is needed 
when the typical mode has a given angular har- 
monic and oscillation frequency. Figure 5b shows 
a similar plot for the peak flow velocity at rm, 
derived from Equation (12) and the relation on 
Figure 2. When observational resolution improves 
to the point that k and therefore VO are known, 
Figure 5b will provide a relation [TO = f ( l )  indi- 
cating what range of radial harmonics are partici- 
pating. This would reduce to one, the present two 
parameter (00, e) uncertainty about typical states 
of g-modes that drive the flow. 

If the energy density of the typical state were 
equally distributed over N,,, modes of comparable 
horizontal and vertical scale, then the amplitude 
of a single mode would be urn utypN7;;0.5. For 
example, the case marked with plus signs on Fig- 
ure 5 has utyp = 210 m/s. If its energy is spread 
over 1000 modes, um = 6.6 m/s. Amplitudes are 
strongly reduced in the convective envelope by the 
factor q = ( ~ ~ / r ~ ) ~ ( p b / p t ) " . "  where b identifies the 
bottom of the convection and t the top location 
where radiative and convective losses can reason- 
ably be ignored. The dashed curves in Figure 5a 
show where qu, = 1 mm/s at rt = 0.99& for the 
cases of 100 and 10000 modes. Oscillation ampli- 
tudes are < 1 mm/s to  the right of the appropri- 
ate dashed curve. Thus most of the g-mode states 
covered by the figure would be unobservable at the 
solar surface by their os<illatory motion. 

For a given array of active g-modes, an east- 
west flow field centered deeper in the Sun would al- 
most certainly have an oscillation period different 
from 1.3 yr. That is because equation (12) solved 
for w would have five radially dependent factors in 
its right member. In other words, each depth has 
a "natural period". But physically the period has 
to be the same over the shell containing the flow, 
otherwise wave filtering by lower layers would fall 
out of phase with the flow above and fail to  re- 
verse the upper part of the flow properly. The top 
part of the flow would become more chaotic than 
periodic. We suggest that this is what limits the 
thickness of the shell containing the flow. The nat- 

1 
ural periods within the shell must be sufficiently 
similar so that they can lock together and act with 
one period. Solar observations show that the shell 
over which this has occurred is about 0.1% thick. 

There are some obvious limitations to this sim- 
ple model. It considers only two dimensional mo- 
tions in the equatorial region. More complex three 
dimensional flows at higher latitudes are likely to  
feed back and modulate the diffusivity at the equa- 
tor, affecting the flow predicted by our model. 
Also, we forced the vertical profile of flow veloc- 
ity to be a radially damped sine wave. During 
the time this flow wave drifts down by a wave- 
length divided by 27r, neither the radial &ear of . 

the flow nor its downward speed is allowed to vary 
by much. But in reality, each should fluctuate 
about its mean trend because each is partially con- 
trolled by a sinusoidal function; respectively, p or 
6 on Figure 4. Numerical integrations of the equa- 
tions of motion are more appropriate to  investigate 
such details. But analytic or numerical, the large 
uncertainties in estimating turbulence will under- 
lie all results. 

If g-modes are indeed driving the zonal flow ob- 
served above 0.6R0, then they should also drive 
flows in the rest of the Sun's nonconvecting inte- 
rior. Their reversal periods 2n/w would probably 
be different from 1.3 yr. Discovery of a new zonal 
flow in deeper layers would lend important sup- 
port to the overall approach in this paper. The 
model applies to any depth in the nonconvecting 
interior but, being designed for a thin shell, should 
be applied to only one flow system at a time. If a 
deeper flow has a longer reversal period, it might 
be detected first by the way its wave filtering im- 
poses a time dependent bias on the mean velocity 
of the currently observed 1.3 yr flow. 

In summary, the horizontal turbulence of the 
flow itself causes a larger diffusivity than any used 
previously to study these solar flows (Figure 1). 
The larger D was very helpful in matching the ob- 
served 1.3 yr period without appealing to g-modes 
of extremely large angular harmonic l or very low 
oscillation frequency [TO. We found two analytic 
relations (eqs. [ll & 12]), between a reversing 
zonal flow and its driver-a pair of oppositely run- 
ning g-modes. The pair is supposed to typify those 
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high harmonics that are primarily responsible for 
driving the flow. For a wide range of g-mode pa- 
rameters ( !, GO), Figure 5 shows compatible val- 
ues for peak flow velocity Vo and g-mode ampli- 
tude utyp. In most of the cases, g-mode amplitudes 
at the soiar sun'iice woiiX be unzbser~&!y we& 

The observations still permit a large range of 
flow velocities and radial wavenumbers (Fig. 2). 
Our use of VO = 50 m/s in examples does not ex- 
clude the possibility that its real value might be 
smaller or larger. Finally, there is another branch 
of solutions to equation (1) in which p2 << 1 is 
not true. This would be needed if r-modes, not 
g-modes, turn out to be the main drivers of the 
1.3 yr flow system. 

(W.2). 
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Fig. 2.- Zonal flow amplitude V, and radial wavenumber k that are mutually consistent 

with the observations of Howe, et al. (2000) near the radial midpoint of the flow. Future 

improvements in radial resolving power will restrict the range of possible 16 and k values. 
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Fig. 3.- At any radial distance, the speed instantaneously driving turbulence, (VI, has a 

time averaged value of about 2A/r as  this velocity field drifts downward within its envelope 

A. The arrow shows how far the field travels in a time 27. The dashed curve is used to define 

the effective velocity V, forcing turbulence. 
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Fig. 5.- a) The g-mode amplitude utyp and b) flow velocity amplitude V, required at T, if 

the flow is entirely driven by one g-mode pair (+m and -m) in the angular harmonic state 

1 with oscillation frequency uo. If a pair with typical velocity utyp had its energy distributed 

among 10’ or lo4 pairs of similar modes, each would have an amplitude < 1 mm/s at 0.99% 

for cases to the right of the applicable dashed curve. The plus sign marks a sample case 

discussed in the text. When new observations can severely constrain the possible values of 

V,, this figure will greatly reduce the combinations of 1 and (TO that could reasonably be 

significant drivers of the flow. 


